Skip to content

Lye concentration

Measurements

Amount Breakdown
Low water \(50\%\space LC\) \(50\%\space NaOH\) (Lye)
\(50\%\space H_20\) (Water)
Medium water \(33\%\space LC\) \(33\%\space NaOH\) (Lye)
\(67\%\space H_20\) (Water)
High water \(25\%\space LC\) \(25\%\space NaOH\) (Lye)
\(75\%\space H_20\) (Water)

"Lye" A.K.A. "Caustic soda", is the chemical Sodium hydroxide (\(NaOH\))


Calculations

Page 1

\[ C=\frac{n}{V},\space\space n=\frac{N}{N_A}=\frac{m}{M} \]

If \(m\) is in \([g]\), then \(M\) in \([g * mol^{-1}]\) and so on - must cancel? to give \(mol\) without magnitude change.

m [g]

M [g*mol_1]

\[ \therefore C=\frac{n}{V},\space\space n=\frac{n}{M} \]

so then:

\[ C=\frac{m}{VM} \]
\[ M_{NaOH} = 22.99 + 16 + 1.008 = 39.998\space\space g \cdot mol^{-1} \]
\[ \therefore M_{NaOH}=40\space\space g \cdot mol^{-1} \]

Page 2

\[ n_L\space |\space const \]

Let the following variables have the values:

\[ L\congruent NaOH,\space\space W\congruent H_20 \space\space V=V_w \]
\[ C_L = \frac{n_L}{V} = \frac{m_L}{V_{w}M_{L}} \]
\[ \therefore n_L = \frac{m_L}{M_L} \]
\[ P_w = \frac{m_w}{V} \]

where \(P_w\) is for water density (by mass) at \(20^{^O}C \congruent 293.15K = temperature\) and \(1013.25\space hPa = pressure\) . (see 1)

m [kg*m^-3]

M [g*L^-1]

\[ \therefore P_w = 998.23 kg \cdot m^{-3} \]
\[ \arrow P_w = 998.23 g \cdot L^{-1} \]
\[ 1kg \congruent 1000g,\space\space 1m^{3} \congruent 1 * (10^{1})^{3}\space dm^{3} = 1000L \]
\[ \therefore \frac{1000}{1000} = 1,\space 1kg \cdot m^{-3} = 1\space g \cdot L^{-1} \]

Therefore the mass density of the water is:

\[ P_w = \therefore 998.23\space g \cdot L^{-1} \]
  1. According to van.physics.illinois.edu

Page 3

\[ M_{H_2O} = 2 * 1.008 + 16 \]
\[ M_{H_2O} = 18.016\space g \cdot mol^{-1} \]
\[ V = m_L * \frac{(1-\frac{P_L}{100})M_w}{(\frac{P_L}{100})P_wM_L} \]

where \(L\) is for \(NaOH\) and \(w\) is for \(H_2O\) (water).

See pages A and B for formula derivation


For Litres [L]

\[ V = m_L * \frac{100-P_L}{P_L} * (\frac{18.016}{998.23*40}) \]

For Litres [mL]

\[ V = m_L * \frac{100-P_L}{P_L} * (\frac{18.016*10^3}{998.23*40}) \]